A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin
نویسندگان
چکیده
In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure.
منابع مشابه
Salen Mn Complexes are Superoxide Dismutase/Catalase Mimetics that Protect the Mitochondria
Salen Mn complexes, including EUK-134, EUK-189 and a cyclized analog EUK-207, are synthetic superoxide dismutase (SOD) and catalase mimetics that are beneficial in many models of oxidative stress. Though not designed to target the mitochondria, salen Mn complexes show "mito-protective" activity, that is, an ability to attenuate mitochondrial injury, in various experimental systems. Treatment wi...
متن کاملEUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology.
The present study tested the effects of EUK-134, a synthetic superoxide dismutase/catalase mimetic, on several indices of oxidative stress and neuropathology produced in the rat limbic system as a result of seizure activity elicited by systemic kainic acid (KA) administration. Pretreatment of rats with EUK-134 did not modify the latency for or duration of KA-induced seizure activity. It did pro...
متن کاملInduction of apoptosis in fetal pulmonary arterial smooth muscle cells by a combined superoxide dismutase/catalase mimetic.
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are known to play an important role in the proliferation and viability of vascular smooth muscle cells. In this study, we determined the effects of increased superoxide dismutase and catalase activity on fetal pulmonary arterial smooth muscle cell (FPASMC) proliferation and viability using EUK-134, a superoxide dismutase/cat...
متن کاملPrevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons.
Oxidative stress has been implicated in the selective degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). In this study, we tested the efficacy of EUK-134, a superoxide dismutase (SOD) and catalase mimetic, on the nitration of tyrosine hydroxylase (TH), a marker of oxidative stress, and neurotoxicity produced by 1-methyl-4-phenylpyridinium (MPP(+)) and 6-hydroxydopamine ...
متن کاملPrevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice.
Continuous decline in cognitive performance accompanies the natural aging process in humans, and multiple studies in both humans and animal models have indicated that this decrease in cognitive function is associated with an age-related increase in oxidative stress. Treating aging mammals with exogenous free radical scavengers has generally been shown to attenuate age-related cognitive decline ...
متن کامل